Paper 2, Section II, C

Methods
Part IB, 2012

Consider the linear differential operator L\mathcal{L} defined by

Ly:=d2ydx2+y\mathcal{L} y:=-\frac{d^{2} y}{d x^{2}}+y

on the interval 0x<0 \leqslant x<\infty. Given the boundary conditions y(0)=0y(0)=0 and limxy(x)=0\lim _{x \rightarrow \infty} y(x)=0, find the Green's function G(x,ξ)G(x, \xi) for L\mathcal{L} with these boundary conditions. Hence, or otherwise, obtain the solution of

Ly={1,0xμ0,μ<x<\mathcal{L} y= \begin{cases}1, & 0 \leqslant x \leqslant \mu \\ 0, & \mu<x<\infty\end{cases}

subject to the above boundary conditions, where μ\mu is a positive constant. Show that your piecewise solution is continuous at x=μx=\mu and has the value

y(μ)=12(1+e2μ2eμ).y(\mu)=\frac{1}{2}\left(1+e^{-2 \mu}-2 e^{-\mu}\right) .