Paper 1, Section I, D

Numerical Analysis
Part IB, 2012

A=[1aa2a3a31aa2a2a31aaa2a31],b=[γ000],γ=1a40A=\left[\begin{array}{cccc} 1 & a & a^{2} & a^{3} \\ a^{3} & 1 & a & a^{2} \\ a^{2} & a^{3} & 1 & a \\ a & a^{2} & a^{3} & 1 \end{array}\right], \quad b=\left[\begin{array}{l} \gamma \\ 0 \\ 0 \\ 0 \end{array}\right], \quad \gamma=1-a^{4} \neq 0

Find the LU factorization of the matrix AA and use it to solve the system Ax=bA x=b via forward and backward substitution. [Other methods of solution are not acceptable.]