Paper 2, Section II, D

Numerical Analysis
Part IB, 2012

Let {Pn}n=0\left\{P_{n}\right\}_{n=0}^{\infty} be the sequence of monic polynomials of degree nn orthogonal on the interval [1,1][-1,1] with respect to the weight function ww.

Prove that each PnP_{n} has nn distinct zeros in the interval (1,1)(-1,1).

Let P0(x)=1,P1(x)=xa1P_{0}(x)=1, P_{1}(x)=x-a_{1}, and let PnP_{n} satisfy the following three-term recurrence relation:

Pn(x)=(xan)Pn1(x)bn2Pn2(x),n2P_{n}(x)=\left(x-a_{n}\right) P_{n-1}(x)-b_{n}^{2} P_{n-2}(x), \quad n \geqslant 2

Set

An=[a1b200b2a2b300bn1an1bn00bnan]A_{n}=\left[\begin{array}{ccccc} a_{1} & b_{2} & 0 & \cdots & 0 \\ b_{2} & a_{2} & b_{3} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{n-1} & a_{n-1} & b_{n} \\ 0 & \cdots & 0 & b_{n} & a_{n} \end{array}\right]

Prove that Pn(x)=det(xIAn),n1P_{n}(x)=\operatorname{det}\left(x I-A_{n}\right), n \geqslant 1, and deduce that all the eigenvalues of AnA_{n} are distinct and reside in (1,1)(-1,1).