Paper 3, Section I, C

Quantum Mechanics
Part IB, 2012

A one-dimensional quantum mechanical particle has normalised bound state energy eigenfunctions χn(x)\chi_{n}(x) and corresponding non-degenerate energy eigenvalues EnE_{n}. At t=0t=0 the normalised wavefunction ψ(x,t)\psi(x, t) is given by

ψ(x,0)=56eik1χ1(x)+16eik2χ2(x)\psi(x, 0)=\sqrt{\frac{5}{6}} e^{i k_{1}} \chi_{1}(x)+\sqrt{\frac{1}{6}} e^{i k_{2}} \chi_{2}(x)

where k1k_{1} and k2k_{2} are real constants. Write down the expression for ψ(x,t)\psi(x, t) at a later time tt and give the probability that a measurement of the particle's energy will yield a value of E2E_{2}.

Show that the expectation value of xx at time tt is given by

x=56x11+16x22+53Re[x12ei(k2k1)i(E2E1)t/]\langle x\rangle=\frac{5}{6}\langle x\rangle_{11}+\frac{1}{6}\langle x\rangle_{22}+\frac{\sqrt{5}}{3} \operatorname{Re}\left[\langle x\rangle_{12} e^{i\left(k_{2}-k_{1}\right)-i\left(E_{2}-E_{1}\right) t / \hbar}\right]

where xij=χi(x)xχj(x)dx\langle x\rangle_{i j}=\int_{-\infty}^{\infty} \chi_{i}^{*}(x) x \chi_{j}(x) d x.