Paper 3, Section II, H

Statistics
Part IB, 2012

Suppose that XX is a single observation drawn from the uniform distribution on the interval [θ10,θ+10][\theta-10, \theta+10], where θ\theta is unknown and might be any real number. Given θ020\theta_{0} \neq 20 we wish to test H0:θ=θ0H_{0}: \theta=\theta_{0} against H1:θ=20H_{1}: \theta=20. Let ϕ(θ0)\phi\left(\theta_{0}\right) be the test which accepts H0H_{0} if and only if XA(θ0)X \in A\left(\theta_{0}\right), where

A(θ0)={[θ08,),θ0>20(,θ0+8],θ0<20A\left(\theta_{0}\right)= \begin{cases}{\left[\theta_{0}-8, \infty\right),} & \theta_{0}>20 \\ \left(-\infty, \theta_{0}+8\right], & \theta_{0}<20\end{cases}

Show that this test has size α=0.10\alpha=0.10.

Now consider

C1(X)={θ:XA(θ)}C2(X)={θ:X9θX+9}\begin{aligned} &C_{1}(X)=\{\theta: X \in A(\theta)\} \\ &C_{2}(X)=\{\theta: X-9 \leqslant \theta \leqslant X+9\} \end{aligned}

Prove that both C1(X)C_{1}(X) and C2(X)C_{2}(X) specify 90%90 \% confidence intervals for θ\theta. Find the confidence interval specified by C1(X)C_{1}(X) when X=0X=0.

Let Li(X)L_{i}(X) be the length of the confidence interval specified by Ci(X)C_{i}(X). Let β(θ0)\beta\left(\theta_{0}\right) be the probability of the Type II error of ϕ(θ0)\phi\left(\theta_{0}\right). Show that

E[L1(X)θ=20]=E[1{θ0C1(X)}dθ0θ=20]=β(θ0)dθ0E\left[L_{1}(X) \mid \theta=20\right]=E\left[\int_{-\infty}^{\infty} 1_{\left\{\theta_{0} \in C_{1}(X)\right\}} d \theta_{0} \mid \theta=20\right]=\int_{-\infty}^{\infty} \beta\left(\theta_{0}\right) d \theta_{0}

Here 1{B}1_{\{B\}} is an indicator variable for event BB. The expectation is over XX. [Orders of integration and expectation can be interchanged.]

Use what you know about constructing best tests to explain which of the two confidence intervals has the smaller expected length when θ=20\theta=20.