Paper 3, Section II, E

Complex Analysis
Part IB, 2012

Let D(a,R)D(a, R) denote the disc za<R|z-a|<R and let f:D(a,R)Cf: D(a, R) \rightarrow \mathbb{C} be a holomorphic function. Using Cauchy's integral formula show that for every r(0,R)r \in(0, R)

f(a)=01f(a+re2πit)dtf(a)=\int_{0}^{1} f\left(a+r e^{2 \pi i t}\right) d t

Deduce that if for every zD(a,R),f(z)f(a)z \in D(a, R),|f(z)| \leqslant|f(a)|, then ff is constant.

Let f:D(0,1)D(0,1)f: D(0,1) \rightarrow D(0,1) be holomorphic with f(0)=0f(0)=0. Show that f(z)z|f(z)| \leqslant|z| for all zD(0,1)z \in D(0,1). Moreover, show that if f(w)=w|f(w)|=|w| for some w0w \neq 0, then there exists λ\lambda with λ=1|\lambda|=1 such that f(z)=λzf(z)=\lambda z for all zD(0,1)z \in D(0,1).