Paper 1, Section I, A

Complex Analysis or Complex Methods
Part IB, 2012

Find a conformal transformation ζ=ζ(z)\zeta=\zeta(z) that maps the domain D,0<argz<3π2D, 0<\arg z<\frac{3 \pi}{2}, on to the strip 0<Im(ζ)<10<\operatorname{Im}(\zeta)<1.

Hence find a bounded harmonic function ϕ\phi on DD subject to the boundary conditions ϕ=0,A\phi=0, A on argz=0,3π2\arg z=0, \frac{3 \pi}{2}, respectively, where AA is a real constant.