Paper 3, Section I, 2F2 F

Analysis II
Part IB, 2013

For each of the following sequences of functions on [0,1][0,1], indexed by n=1,2,n=1,2, \ldots, determine whether or not the sequence has a pointwise limit, and if so, determine whether or not the convergence to the pointwise limit is uniform.

  1. fn(x)=1/(1+n2x2)f_{n}(x)=1 /\left(1+n^{2} x^{2}\right)

  2. gn(x)=nx(1x)ng_{n}(x)=n x(1-x)^{n}

  3. hn(x)=nx(1x)nh_{n}(x)=\sqrt{n} x(1-x)^{n}