Paper 4, Section I, 3F3 F

Analysis II
Part IB, 2013

State and prove the chain rule for differentiable mappings F:RnRmF: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} and G:RmRkG: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}.

Suppose now F:R2R2F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} has image lying on the unit circle in R2\mathbb{R}^{2}. Prove that the determinant det(DFx)\operatorname{det}\left(\left.D F\right|_{x}\right) vanishes for every xR2x \in \mathbb{R}^{2}.