Paper 4, Section II, D

Complex Methods
Part IB, 2013

Let C1C_{1} and C2C_{2} be the circles x2+y2=1x^{2}+y^{2}=1 and 5x24x+5y2=05 x^{2}-4 x+5 y^{2}=0, respectively, and let DD be the (finite) region between the circles. Use the conformal mapping

w=z22z1w=\frac{z-2}{2 z-1}

to solve the following problem:

2ϕ=0 in D with ϕ=1 on C1 and ϕ=2 on C2\nabla^{2} \phi=0 \text { in } D \text { with } \phi=1 \text { on } C_{1} \text { and } \phi=2 \text { on } C_{2}