Paper 1, Section II, 16D16 \mathrm{D}

Electromagnetism
Part IB, 2013

Briefly explain the main assumptions leading to Drude's theory of conductivity. Show that these assumptions lead to the following equation for the average drift velocity v(t)\langle\mathbf{v}(t)\rangle of the conducting electrons:

dvdt=τ1v+(e/m)E\frac{d\langle\mathbf{v}\rangle}{d t}=-\tau^{-1}\langle\mathbf{v}\rangle+(e / m) \mathbf{E}

where mm and ee are the mass and charge of each conducting electron, τ1\tau^{-1} is the probability that a given electron collides with an ion in unit time, and E\mathbf{E} is the applied electric field.

Given that v=v0eiωt\langle\mathbf{v}\rangle=\mathbf{v}_{0} e^{-i \omega t} and E=E0eiωt\mathbf{E}=\mathbf{E}_{0} e^{-i \omega t}, where v0\mathbf{v}_{0} and E0\mathbf{E}_{0} are independent of tt, show that

J=σE\mathbf{J}=\sigma \mathbf{E}

Here, σ=σs/(1iωτ),σs=ne2τ/m\sigma=\sigma_{s} /(1-i \omega \tau), \sigma_{s}=n e^{2} \tau / m and nn is the number of conducting electrons per unit volume.

Now let v0=v~0eikx\mathbf{v}_{0}=\widetilde{\mathbf{v}}_{0} e^{i \mathbf{k} \cdot \mathbf{x}} and E0=E~0eikx\mathbf{E}_{0}=\widetilde{\mathbf{E}}_{0} e^{i \mathbf{k} \cdot \mathbf{x}}, where v~0\widetilde{\mathbf{v}}_{0} and E~0\widetilde{\mathbf{E}}_{0} are constant. Assuming that ()(*) remains valid, use Maxwell's equations (taking the charge density to be everywhere zero but allowing for a non-zero current density) to show that

k2=ω2c2ϵrk^{2}=\frac{\omega^{2}}{c^{2}} \epsilon_{r}

where the relative permittivity ϵr=1+iσ/(ωϵ0)\epsilon_{r}=1+i \sigma /\left(\omega \epsilon_{0}\right) and k=kk=|\mathbf{k}|.

In the case ωτ1\omega \tau \gg 1 and ω<ωp\omega<\omega_{p}, where ωp2=σs/τϵ0\omega_{p}^{2}=\sigma_{s} / \tau \epsilon_{0}, show that the wave decays exponentially with distance inside the conductor.