Paper 2, Section II, D

Electromagnetism
Part IB, 2013

Starting with the expression

A(r)=μ04πJ(r)dVrr\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) d V^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}

for the magnetic vector potential at the point rr due to a current distribution of density J(r)\mathbf{J}(\mathbf{r}), obtain the Biot-Savart law for the magnetic field due to a current II flowing in a simple loop CC :

B(r)=μ0I4πCdr×(rr)rr3(rC).\mathbf{B}(\mathbf{r})=-\frac{\mu_{0} I}{4 \pi} \oint_{C} \frac{d \mathbf{r}^{\prime} \times\left(\mathbf{r}^{\prime}-\mathbf{r}\right)}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|^{3}} \quad(\mathbf{r} \notin C) .

Verify by direct differentiation that this satisfies ×B=0\boldsymbol{\nabla} \times \mathbf{B}=\mathbf{0}. You may use without proof the identity ×(a×v)=a(v)(a)v\boldsymbol{\nabla} \times(\mathbf{a} \times \mathbf{v})=\mathbf{a}(\boldsymbol{\nabla} \cdot \mathbf{v})-(\mathbf{a} \cdot \boldsymbol{\nabla}) \mathbf{v}, where a\mathbf{a} is a constant vector and v\mathbf{v} is a vector field.

Given that CC is planar, and is described in cylindrical polar coordinates by z=0z=0, r=f(θ)r=f(\theta), show that the magnetic field at the origin is

z^μ0I4πdθf(θ)\widehat{\mathbf{z}} \frac{\mu_{0} I}{4 \pi} \oint \frac{d \theta}{f(\theta)}

If CC is the ellipse r(1ecosθ)=r(1-e \cos \theta)=\ell, find the magnetic field at the focus due to a current II.