Paper 2, Section I, F

Analysis II
Part IB, 2013

Let C[a,b]\mathcal{C}[a, b] denote the vector space of continuous real-valued functions on the interval [a,b][a, b], and let C[a,b]\mathcal{C}^{\prime}[a, b] denote the subspace of continuously differentiable functions.

Show that f1=maxf+maxf\|f\|_{1}=\max |f|+\max \left|f^{\prime}\right| defines a norm on C[a,b]\mathcal{C}^{\prime}[a, b]. Show furthermore that the map Φ:ff((a+b)/2)\Phi: f \mapsto f^{\prime}((a+b) / 2) takes the closed unit ball {f11}C[a,b]\left\{\|f\|_{1} \leqslant 1\right\} \subset \mathcal{C}^{\prime}[a, b] to a bounded subset of R\mathbb{R}.

If instead we had used the norm f0=maxf\|f\|_{0}=\max |f| restricted from C[a,b]\mathcal{C}[a, b] to C[a,b]\mathcal{C}^{\prime}[a, b], would Φ\Phi take the closed unit ball {f01}C[a,b]\left\{\|f\|_{0} \leqslant 1\right\} \subset \mathcal{C}^{\prime}[a, b] to a bounded subset of R\mathbb{R} ? Justify your answer.