Paper 1, Section II, E

Linear Algebra
Part IB, 2013

If V1V_{1} and V2V_{2} are vector spaces, what is meant by V1V2V_{1} \oplus V_{2} ? If V1V_{1} and V2V_{2} are subspaces of a vector space VV, what is meant by V1+V2V_{1}+V_{2} ?

Stating clearly any theorems you use, show that if V1V_{1} and V2V_{2} are subspaces of a finite dimensional vector space VV, then

dimV1+dimV2=dim(V1V2)+dim(V1+V2)\operatorname{dim} V_{1}+\operatorname{dim} V_{2}=\operatorname{dim}\left(V_{1} \cap V_{2}\right)+\operatorname{dim}\left(V_{1}+V_{2}\right)

Let V1,V2R4V_{1}, V_{2} \subset \mathbb{R}^{4} be subspaces with bases

V1=(3,2,4,1),(1,2,1,2),(2,3,3,2)V2=(1,4,2,4),(1,1,1,1),(3,1,2,0).\begin{gathered} V_{1}=\langle(3,2,4,-1),(1,2,1,-2),(-2,3,3,2)\rangle \\ V_{2}=\langle(1,4,2,4),(-1,1,-1,-1),(3,1,2,0)\rangle . \end{gathered}

Find a basis v1,v2\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle for V1V2V_{1} \cap V_{2} such that the first component of v1\mathbf{v}_{1} and the second component of v2\mathbf{v}_{2} are both 0 .