Paper 4, Section I, H

Markov Chains
Part IB, 2013

Suppose PP is the transition matrix of an irreducible recurrent Markov chain with state space II. Show that if xx is an invariant measure and xk>0x_{k}>0 for some kIk \in I, then xj>0x_{j}>0 for all jIj \in I.

Let

γjk=pkj+t=1i1k,,itkpkitpitit1pi1j\gamma_{j}^{k}=p_{k j}+\sum_{t=1}^{\infty} \sum_{i_{1} \neq k, \ldots, i_{t} \neq k} p_{k i_{t}} p_{i_{t} i_{t-1}} \cdots p_{i_{1} j}

Give a meaning to γjk\gamma_{j}^{k} and explain why γkk=1\gamma_{k}^{k}=1.

Suppose xx is an invariant measure with xk=1x_{k}=1. Prove that xjγjkx_{j} \geqslant \gamma_{j}^{k} for all jj.