Paper 2, Section II, H

Markov Chains
Part IB, 2013

(i) Suppose (Xn)n0\left(X_{n}\right)_{n \geqslant 0} is an irreducible Markov chain and fij=P(Xn=jf_{i j}=P\left(X_{n}=j\right. for some n1X0=i)\left.n \geqslant 1 \mid X_{0}=i\right). Prove that fiifijfjif_{i i} \geqslant f_{i j} f_{j i} and that

n=0Pi(Xn=i)=n=1fiin1\sum_{n=0}^{\infty} P_{i}\left(X_{n}=i\right)=\sum_{n=1}^{\infty} f_{i i}^{n-1}

(ii) Let (Xn)n0\left(X_{n}\right)_{n \geqslant 0} be a symmetric random walk on the Z2\mathbb{Z}^{2} lattice. Prove that (Xn)n0\left(X_{n}\right)_{n \geqslant 0} is recurrent. You may assume, for n1n \geqslant 1,

1/2<22nn(2nn)<11 / 2<2^{-2 n} \sqrt{n}\left(\begin{array}{c} 2 n \\ n \end{array}\right)<1

(iii) A princess and monster perform independent random walks on the Z2\mathbb{Z}^{2} lattice. The trajectory of the princess is the symmetric random walk (Xn)n0\left(X_{n}\right)_{n \geqslant 0}. The monster's trajectory, denoted (Zn)n0\left(Z_{n}\right)_{n \geqslant 0}, is a sleepy version of an independent symmetric random walk (Yn)n0\left(Y_{n}\right)_{n \geqslant 0}. Specifically, given an infinite sequence of integers 0=n0<n1<0=n_{0}<n_{1}<\cdots, the monster sleeps between these times, so Zni+1==Zni+1=Yi+1Z_{n_{i}+1}=\cdots=Z_{n_{i+1}}=Y_{i+1}. Initially, X0=(100,0)X_{0}=(100,0) and Z0=Y0=(0,100)Z_{0}=Y_{0}=(0,100). The princess is captured if and only if at some future time she and the monster are simultaneously at (0,0)(0,0).

Compare the capture probabilities for an active monster, who takes ni+1=ni+1n_{i+1}=n_{i}+1 for all ii, and a sleepy monster, who takes nin_{i} spaced sufficiently widely so that

P(Xk=(0,0) for some k{ni+1,,ni+1})>1/2P\left(X_{k}=(0,0) \text { for some } k \in\left\{n_{i}+1, \ldots, n_{i+1}\right\}\right)>1 / 2