Paper 4, Section I, C

Methods
Part IB, 2013

Show that the general solution of the wave equation

1c22yt22yx2=0\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}-\frac{\partial^{2} y}{\partial x^{2}}=0

can be written in the form

y(x,t)=f(ctx)+g(ct+x).y(x, t)=f(c t-x)+g(c t+x) .

For the boundary conditions

y(0,t)=y(L,t)=0,t>0,y(0, t)=y(L, t)=0, \quad t>0,

find the relation between ff and gg and show that they are 2L2 L-periodic. Hence show that

E(t)=120L(1c2(yt)2+(yx)2)dxE(t)=\frac{1}{2} \int_{0}^{L}\left(\frac{1}{c^{2}}\left(\frac{\partial y}{\partial t}\right)^{2}+\left(\frac{\partial y}{\partial x}\right)^{2}\right) d x

is independent of tt.