Paper 3, Section I, C

Methods
Part IB, 2013

The solution to the Dirichlet problem on the half-space D={x=(x,y,z):z>0}D=\{\mathbf{x}=(x, y, z): z>0\} :

2u(x)=0,xD,u(x)0 as x,u(x,y,0)=h(x,y)\nabla^{2} u(\mathbf{x})=0, \quad \mathbf{x} \in D, \quad u(\mathbf{x}) \rightarrow 0 \quad \text { as } \quad|\mathbf{x}| \rightarrow \infty, \quad u(x, y, 0)=h(x, y)

is given by the formula

u(x0)=u(x0,y0,z0)=h(x,y)nG(x,x0)dxdyu\left(\mathbf{x}_{0}\right)=u\left(x_{0}, y_{0}, z_{0}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) \frac{\partial}{\partial n} G\left(\mathbf{x}, \mathbf{x}_{0}\right) d x d y

where nn is the outward normal to D\partial D.

State the boundary conditions on GG and explain how GG is related to G3G_{3}, where

G3(x,x0)=14π1xx0G_{3}\left(\mathbf{x}, \mathbf{x}_{0}\right)=-\frac{1}{4 \pi} \frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|}

is the fundamental solution to the Laplace equation in three dimensions.

Using the method of images find an explicit expression for the function nG(x,x0)\frac{\partial}{\partial n} G\left(\mathbf{x}, \mathbf{x}_{0}\right) in the formula.