Paper 3, Section II, F

Analysis II
Part IB, 2013

For each of the following statements, provide a proof or justify a counterexample.

  1. The norms x1=i=1nxi\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| and x=max1inxi\|x\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left|x_{i}\right| on Rn\mathbb{R}^{n} are Lipschitz equivalent.

  2. The norms x1=i=1xi\|x\|_{1}=\sum_{i=1}^{\infty}\left|x_{i}\right| and x=maxixi\|x\|_{\infty}=\max _{i}\left|x_{i}\right| on the vector space of sequences (xi)i1\left(x_{i}\right)_{i \geqslant 1} with xi<\sum\left|x_{i}\right|<\infty are Lipschitz equivalent.

  3. Given a linear function ϕ:VW\phi: V \rightarrow W between normed real vector spaces, there is some NN for which ϕ(x)N\|\phi(x)\| \leqslant N for every xVx \in V with x1\|x\| \leqslant 1.

  4. Given a linear function ϕ:VW\phi: V \rightarrow W between normed real vector spaces for which there is some NN for which ϕ(x)N\|\phi(x)\| \leqslant N for every xVx \in V with x1\|x\| \leqslant 1, then ϕ\phi is continuous.

  5. The uniform norm f=supxRf(x)\|f\|=\sup _{x \in \mathbb{R}}|f(x)| is complete on the vector space of continuous real-valued functions ff on R\mathbb{R} for which f(x)=0f(x)=0 for x|x| sufficiently large.

  6. The uniform norm f=supxRf(x)\|f\|=\sup _{x \in \mathbb{R}}|f(x)| is complete on the vector space of continuous real-valued functions ff on R\mathbb{R} which are bounded.