Paper 3, Section II, C

Methods
Part IB, 2013

The Laplace equation in plane polar coordinates has the form

2ϕ=[1rr(rr)+1r22θ2]ϕ(r,θ)=0.\nabla^{2} \phi=\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right] \phi(r, \theta)=0 .

Using separation of variables, derive the general solution to the equation that is singlevalued in the domain 1<r<21<r<2.

For

f(θ)=n=1Ansinnθf(\theta)=\sum_{n=1}^{\infty} A_{n} \sin n \theta

solve the Laplace equation in the annulus with the boundary conditions:

2ϕ=0,1<r<2,ϕ(r,θ)={f(θ),r=1f(θ)+1,r=2\nabla^{2} \phi=0, \quad 1<r<2, \quad \phi(r, \theta)= \begin{cases}f(\theta), & r=1 \\ f(\theta)+1, & r=2\end{cases}