Paper 4, Section II, C

Methods
Part IB, 2013

Find the inverse Fourier transform G(x)G(x) of the function

g(k)=eak,a>0,<k<.g(k)=e^{-a|k|}, \quad a>0, \quad-\infty<k<\infty .

Assuming that appropriate Fourier transforms exist, determine the solution ψ(x,y)\psi(x, y) of

2ψ=0,<x<,0<y<1\nabla^{2} \psi=0, \quad-\infty<x<\infty, \quad 0<y<1

with the following boundary conditions

ψ(x,0)=δ(x),ψ(x,1)=1π1x2+1\psi(x, 0)=\delta(x), \quad \psi(x, 1)=\frac{1}{\pi} \frac{1}{x^{2}+1}

Here δ(x)\delta(x) is the Dirac delta-function.