Paper 2, Section II, C

Numerical Analysis
Part IB, 2013

Explain briefly what is meant by the convergence of a numerical method for solving the ordinary differential equation

y(t)=f(t,y),t[0,T],y(0)=y0.y^{\prime}(t)=f(t, y), \quad t \in[0, T], \quad y(0)=y_{0} .

Prove from first principles that if the function ff is sufficiently smooth and satisfies the Lipschitz condition

f(t,x)f(t,y)Lxy,x,yR,t[0,T],|f(t, x)-f(t, y)| \leqslant L|x-y|, \quad x, y \in \mathbb{R}, \quad t \in[0, T],

for some L>0L>0, then the backward Euler method

yn+1=yn+hf(tn+1,yn+1)y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right)

converges and find the order of convergence.

Find the linear stability domain of the backward Euler method.