Paper 2, Section I, H
Given a network with a source , a sink , and capacities on directed arcs, define what is meant by a minimum cut.
The streets and intersections of a town are represented by sets of edges and vertices of a connected graph. A city planner wishes to make all streets one-way while ensuring it possible to drive away from each intersection along at least different streets.
Use a theorem about min-cut and max-flow to prove that the city planner can achieve his goal provided that the following is true:
where is the size of and is the number edges with at least one end in . How could the planner find street directions that achieve his goal?
[Hint: Consider a network having nodes , nodes for the streets and nodes for the intersections. There are directed arcs from to each and from each to . From each there are two further arcs, directed towards and that correspond to endpoints of street