The components of the three-dimensional angular momentum operator L^ are defined as follows:
L^x=−iℏ(y∂z∂−z∂y∂)L^y=−iℏ(z∂x∂−x∂z∂)L^z=−iℏ(x∂y∂−y∂x∂)
Given that the wavefunction
ψ=(f(x)+iy)z
is an eigenfunction of L^z, find all possible values of f(x) and the corresponding eigenvalues of ψ. Letting f(x)=x, show that ψ is an eigenfunction of L^2 and calculate the corresponding eigenvalue.