Paper 4, Section I, B

Quantum Mechanics
Part IB, 2013

The components of the three-dimensional angular momentum operator L^\hat{\mathbf{L}} are defined as follows:

L^x=i(yzzy)L^y=i(zxxz)L^z=i(xyyx)\hat{L}_{x}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \quad \hat{L}_{y}=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \quad \hat{L}_{z}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)

Given that the wavefunction

ψ=(f(x)+iy)z\psi=(f(x)+i y) z

is an eigenfunction of L^z\hat{L}_{z}, find all possible values of f(x)f(x) and the corresponding eigenvalues of ψ\psi. Letting f(x)=xf(x)=x, show that ψ\psi is an eigenfunction of L^2\hat{\mathbf{L}}^{2} and calculate the corresponding eigenvalue.