Paper 1, Section II, B

Quantum Mechanics
Part IB, 2013

A particle with momentum p^\hat{p} moves in a one-dimensional real potential with Hamiltonian given by

H^=12m(p^+isA)(p^isA),<x<\hat{H}=\frac{1}{2 m}(\hat{p}+i s A)(\hat{p}-i s A), \quad-\infty<x<\infty

where AA is a real function and sR+s \in \mathbb{R}^{+}. Obtain the potential energy of the system. Find χ(x)\chi(x) such that (p^isA)χ(x)=0(\hat{p}-i s A) \chi(x)=0. Now, putting A=xnA=x^{n}, for nZ+n \in \mathbb{Z}^{+}, show that χ(x)\chi(x) can be normalised only if nn is odd. Letting n=1n=1, use the inequality

ψ(x)H^ψ(x)dx0\int_{-\infty}^{\infty} \psi^{*}(x) \hat{H} \psi(x) d x \geqslant 0

to show that

ΔxΔp2\Delta x \Delta p \geqslant \frac{\hbar}{2}

assuming that both p^\langle\hat{p}\rangle and x^\langle\hat{x}\rangle vanish.