Paper 3, Section II, B

Quantum Mechanics
Part IB, 2013

Obtain, with the aid of the time-dependent Schrödinger equation, the conservation equation

tρ(x,t)+j(x,t)=0\frac{\partial}{\partial t} \rho(\mathbf{x}, t)+\nabla \cdot \mathbf{j}(\mathbf{x}, t)=0

where ρ(x,t)\rho(\mathbf{x}, t) is the probability density and j(x,t)\mathbf{j}(\mathbf{x}, t) is the probability current. What have you assumed about the potential energy of the system?

Show that if the potential U(x,t)U(\mathbf{x}, t) is complex the conservation equation becomes

tρ(x,t)+j(x,t)=2ρ(x,t)ImU(x,t)\frac{\partial}{\partial t} \rho(\mathbf{x}, t)+\nabla \cdot \mathbf{j}(\mathbf{x}, t)=\frac{2}{\hbar} \rho(\mathbf{x}, t) \operatorname{Im} U(\mathbf{x}, t)

Take the potential to be time-independent. Show, with the aid of the divergence theorem, that

ddtR3ρ(x,t)dV=2R3ρ(x,t)ImU(x)dV\frac{d}{d t} \int_{\mathbb{R}^{3}} \rho(\mathbf{x}, t) d V=\frac{2}{\hbar} \int_{\mathbb{R}^{3}} \rho(\mathbf{x}, t) \operatorname{Im} U(\mathbf{x}) d V

Assuming the wavefunction ψ(x,0)\psi(\mathbf{x}, 0) is normalised to unity, show that if ρ(x,t)\rho(\mathbf{x}, t) is expanded about t=0t=0 so that ρ(x,t)=ρ0(x)+tρ1(x)+\rho(\mathbf{x}, t)=\rho_{0}(\mathbf{x})+t \rho_{1}(\mathbf{x})+\cdots, then

R3ρ(x,t)dV=1+2tR3ρ0(x)ImU(x)dV+\int_{\mathbb{R}^{3}} \rho(\mathbf{x}, t) d V=1+\frac{2 t}{\hbar} \int_{\mathbb{R}^{3}} \rho_{0}(\mathbf{x}) \operatorname{Im} U(\mathbf{x}) d V+\cdots

As time increases, how does the quantity on the left of this equation behave if ImU(x)<0\operatorname{Im} U(\mathbf{x})<0 ?