Paper 1, Section I, H

Statistics
Part IB, 2013

Let x1,,xnx_{1}, \ldots, x_{n} be independent and identically distributed observations from a distribution with probability density function

f(x)={λeλ(xμ),xμ0,x<μf(x)= \begin{cases}\lambda e^{-\lambda(x-\mu)}, & x \geqslant \mu \\ 0, & x<\mu\end{cases}

where λ\lambda and μ\mu are unknown positive parameters. Let β=μ+1/λ\beta=\mu+1 / \lambda. Find the maximum likelihood estimators λ^,μ^\hat{\lambda}, \hat{\mu} and β^\hat{\beta}.

Determine for each of λ^,μ^\hat{\lambda}, \hat{\mu} and β^\hat{\beta} whether or not it has a positive bias.