Paper 3, Section II, H

Statistics
Part IB, 2013

Suppose x1x_{1} is a single observation from a distribution with density ff over [0,1][0,1]. It is desired to test H0:f(x)=1H_{0}: f(x)=1 against H1:f(x)=2xH_{1}: f(x)=2 x.

Let δ:[0,1]{0,1}\delta:[0,1] \rightarrow\{0,1\} define a test by δ(x1)=i\delta\left(x_{1}\right)=i \Longleftrightarrow 'accept HiH_{i} '. Let αi(δ)=P(δ(x1)=1iHi)\alpha_{i}(\delta)=P\left(\delta\left(x_{1}\right)=1-i \mid H_{i}\right). State the Neyman-Pearson lemma using this notation.

Let δ\delta be the best test of size 0.100.10. Find δ\delta and α1(δ)\alpha_{1}(\delta).

Consider now δ:[0,1]{0,1,}\delta:[0,1] \rightarrow\{0,1, \star\} where δ(x1)=\delta\left(x_{1}\right)=\star means 'declare the test to be inconclusive'. Let γi(δ)=P(δ(x)=Hi)\gamma_{i}(\delta)=P\left(\delta(x)=\star \mid H_{i}\right). Given prior probabilities π0\pi_{0} for H0H_{0} and π1=1π0\pi_{1}=1-\pi_{0} for H1H_{1}, and some w0,w1w_{0}, w_{1}, let

cost(δ)=π0(w0α0(δ)+γ0(δ))+π1(w1α1(δ)+γ1(δ))\operatorname{cost}(\delta)=\pi_{0}\left(w_{0} \alpha_{0}(\delta)+\gamma_{0}(\delta)\right)+\pi_{1}\left(w_{1} \alpha_{1}(\delta)+\gamma_{1}(\delta)\right)

Let δ(x1)=ix1Ai\delta^{*}\left(x_{1}\right)=i \Longleftrightarrow x_{1} \in A_{i}, where A0=[0,0.5),A=[0.5,0.6),A1=[0.6,1]A_{0}=[0,0.5), A_{\star}=[0.5,0.6), A_{1}=[0.6,1]. Prove that for each value of π0(0,1)\pi_{0} \in(0,1) there exist w0,w1w_{0}, w_{1} (depending on π0)\left.\pi_{0}\right) such that cost(δ)=minδcost(δ).[\operatorname{cost}\left(\delta^{*}\right)=\min _{\delta} \operatorname{cost}(\delta) .\left[\right. Hint :w0=1+2(0.6)(π1/π0).]\left.: w_{0}=1+2(0.6)\left(\pi_{1} / \pi_{0}\right) .\right]

Hence prove that if δ\delta is any test for which

αi(δ)αi(δ),i=0,1\alpha_{i}(\delta) \leqslant \alpha_{i}\left(\delta^{*}\right), \quad i=0,1

then γ0(δ)γ0(δ)\gamma_{0}(\delta) \geqslant \gamma_{0}\left(\delta^{*}\right) and γ1(δ)γ1(δ)\gamma_{1}(\delta) \geqslant \gamma_{1}\left(\delta^{*}\right).