Paper 4, Section II, A

Variational Principles
Part IB, 2013

Derive the Euler-Lagrange equation for the integral

abf(x,y,y,y)dx\int_{a}^{b} f\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x

where prime denotes differentiation with respect to xx, and both yy and yy^{\prime} are specified at x=a,bx=a, b.

Find y(x)y(x) that extremises the integral

0π(y+12y212y2)dx\int_{0}^{\pi}\left(y+\frac{1}{2} y^{2}-\frac{1}{2} y^{\prime \prime 2}\right) d x

subject to y(0)=1,y(0)=0,y(π)=coshπy(0)=-1, y^{\prime}(0)=0, y(\pi)=\cosh \pi and y(π)=sinhπy^{\prime}(\pi)=\sinh \pi.

Show that your solution is a global maximum. You may use the result that

0πϕ2(x)dx0πϕ2(x)dx\int_{0}^{\pi} \phi^{2}(x) d x \leqslant \int_{0}^{\pi} \phi^{\prime 2}(x) d x

for any (suitably differentiable) function ϕ\phi which satisfies ϕ(0)=0\phi(0)=0 and ϕ(π)=0\phi(\pi)=0.