Paper 3, Section I, F

Analysis II
Part IB, 2014

Let URnU \subset \mathbb{R}^{n} be an open set and let f:URf: U \rightarrow \mathbb{R} be a differentiable function on UU such that DfxM\left\|\left.D f\right|_{x}\right\| \leqslant M for some constant MM and all xUx \in U, where Dfx\left\|\left.D f\right|_{x}\right\| denotes the operator norm of the linear map Dfx\left.D f\right|_{x}. Let [a,b]={ta+(1t)b:0t1}(a,b,Rn)[a, b]=\{t a+(1-t) b: 0 \leqslant t \leqslant 1\}\left(a, b, \in \mathbb{R}^{n}\right) be a straight-line segment contained in UU. Prove that f(b)f(a)Mba|f(b)-f(a)| \leqslant M\|b-a\|, where \|\cdot\| denotes the Euclidean norm on Rn\mathbb{R}^{n}.

Prove that if UU is an open ball and Dfx=0\left.D f\right|_{x}=0 for each xUx \in U, then ff is constant on UU.