Paper 2, Section II, BComplex Analysis or Complex MethodsPart IB, 2014By considering a rectangular contour, show that for 0<a<10<a<10<a<1 we have∫−∞∞eaxex+1dx=πsinπa\int_{-\infty}^{\infty} \frac{e^{a x}}{e^{x}+1} d x=\frac{\pi}{\sin \pi a}∫−∞∞ex+1eaxdx=sinπaπHence evaluate∫0∞dtt5/6(1+t)\int_{0}^{\infty} \frac{d t}{t^{5 / 6}(1+t)}∫0∞t5/6(1+t)dt