Paper 2, Section I, B

Fluid Dynamics
Part IB, 2014

Consider the steady two-dimensional fluid velocity field

u=(uv)=(ϵγγϵ)(xy)\mathbf{u}=\left(\begin{array}{l} u \\ v \end{array}\right)=\left(\begin{array}{ll} \epsilon & -\gamma \\ \gamma & -\epsilon \end{array}\right)\left(\begin{array}{l} x \\ y \end{array}\right)

where ϵ0\epsilon \geqslant 0 and γ0\gamma \geqslant 0. Show that the fluid is incompressible. The streamfunction ψ\psi is defined by u=×Ψ\mathbf{u}=\boldsymbol{\nabla} \times \boldsymbol{\Psi}, where Ψ=(0,0,ψ)\boldsymbol{\Psi}=(0,0, \psi). Show that ψ\psi is given by

ψ=ϵxyγ2(x2+y2)\psi=\epsilon x y-\frac{\gamma}{2}\left(x^{2}+y^{2}\right)

Hence show that the streamlines are defined by

(ϵγ)(x+y)2(ϵ+γ)(xy)2=C(\epsilon-\gamma)(x+y)^{2}-(\epsilon+\gamma)(x-y)^{2}=C

for CC a constant. For each of the three cases below, sketch the streamlines and briefly describe the flow. (i) ϵ=1,γ=0\epsilon=1, \gamma=0, (ii) ϵ=0,γ=1\epsilon=0, \gamma=1, (iii) ϵ=1,γ=1\epsilon=1, \gamma=1.