Paper 1, Section I, F

Geometry
Part IB, 2014

Determine the second fundamental form of a surface in R3\mathbb{R}^{3} defined by the parametrisation

σ(u,v)=((a+bcosu)cosv,(a+bcosu)sinv,bsinu)\sigma(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u)

for 0<u<2π,0<v<2π0<u<2 \pi, 0<v<2 \pi, with some fixed a>b>0a>b>0. Show that the Gaussian curvature K(u,v)K(u, v) of this surface takes both positive and negative values.