Paper 3, Section I, F

Geometry
Part IB, 2014

Let f(x)=Ax+bf(x)=A x+b be an isometry RnRn\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, where AA is an n×nn \times n matrix and bRnb \in \mathbb{R}^{n}. What are the possible values of detA\operatorname{det} A ?

Let II denote the n×nn \times n identity matrix. Show that if n=2n=2 and detA>0\operatorname{det} A>0, but AIA \neq I, then ff has a fixed point. Must ff have a fixed point if n=3n=3 and detA>0\operatorname{det} A>0, but AI?A \neq I ? Justify your answer.