Paper 2, Section II, G

Linear Algebra
Part IB, 2014

Define the determinant of an n×nn \times n complex matrix AA. Explain, with justification, how the determinant of AA changes when we perform row and column operations on AA.

Let A,B,CA, B, C be complex n×nn \times n matrices. Prove the following statements. (i) det(AC0B)=detAdetB\operatorname{det}\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)=\operatorname{det} A \operatorname{det} B. (ii) det(ABBA)=det(A+iB)det(AiB)\operatorname{det}\left(\begin{array}{cc}A & -B \\ B & A\end{array}\right)=\operatorname{det}(A+i B) \operatorname{det}(A-i B).