Paper 3, Section I, E

Metric and Topological Spaces
Part IB, 2014

Suppose (X,d)(X, d) is a metric space. Do the following necessarily define a metric on XX ? Give proofs or counterexamples.

(i) d1(x,y)=kd(x,y)d_{1}(x, y)=k d(x, y) for some constant k>0k>0, for all x,yXx, y \in X.

(ii) d2(x,y)=min{1,d(x,y)}d_{2}(x, y)=\min \{1, d(x, y)\} for all x,yXx, y \in X.

(iii) d3(x,y)=(d(x,y))2d_{3}(x, y)=(d(x, y))^{2} for all x,yXx, y \in X.