Paper 4, Section I, C

Numerical Analysis
Part IB, 2014

Consider the quadrature given by

0πw(x)f(x)dxk=1νbkf(ck)\int_{0}^{\pi} w(x) f(x) d x \approx \sum_{k=1}^{\nu} b_{k} f\left(c_{k}\right)

for νN\nu \in \mathbb{N}, disjoint ck(0,π)c_{k} \in(0, \pi) and w>0w>0. Show that it is not possible to make this quadrature exact for all polynomials of order 2ν2 \nu.

For the case that ν=2\nu=2 and w(x)=sinxw(x)=\sin x, by considering orthogonal polynomials find suitable bkb_{k} and ckc_{k} that make the quadrature exact on cubic polynomials.

[Hint: 0πx2sinxdx=π24\int_{0}^{\pi} x^{2} \sin x d x=\pi^{2}-4 and 0πx3sinxdx=π36π.\int_{0}^{\pi} x^{3} \sin x d x=\pi^{3}-6 \pi . ]