Paper 4, Section I, A

Quantum Mechanics
Part IB, 2014

For some quantum mechanical observable QQ, prove that its uncertainty (ΔQ)(\Delta Q) satisfies

(ΔQ)2=Q2Q2(\Delta Q)^{2}=\left\langle Q^{2}\right\rangle-\langle Q\rangle^{2}

A quantum mechanical harmonic oscillator has Hamiltonian

H=p22m+mω2x22H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2}

where m>0m>0. Show that (in a stationary state of energy EE )

E(Δp)22m+mω2(Δx)22E \geqslant \frac{(\Delta p)^{2}}{2 m}+\frac{m \omega^{2}(\Delta x)^{2}}{2}

Write down the Heisenberg uncertainty relation. Then, use it to show that

E12ωE \geqslant \frac{1}{2} \hbar \omega

for our stationary state.