Paper 1, Section II, A

Quantum Mechanics
Part IB, 2014

Consider a particle confined in a one-dimensional infinite potential well: V(x)=V(x)=\infty for xa|x| \geqslant a and V(x)=0V(x)=0 for x<a|x|<a. The normalised stationary states are

ψn(x)={αnsin(πn(x+a)2a) for x<a0 for xa\psi_{n}(x)= \begin{cases}\alpha_{n} \sin \left(\frac{\pi n(x+a)}{2 a}\right) & \text { for }|x|<a \\ 0 & \text { for }|x| \geqslant a\end{cases}

where n=1,2,n=1,2, \ldots.

(i) Determine the αn\alpha_{n} and the stationary states' energies EnE_{n}.

(ii) A state is prepared within this potential well: ψ(x)x\psi(x) \propto x for 0<x<a0<x<a, but ψ(x)=0\psi(x)=0 for x0x \leqslant 0 or xax \geqslant a. Find an explicit expansion of ψ(x)\psi(x) in terms of ψn(x).\psi_{n}(x) .

(iii) If the energy of the state is then immediately measured, show that the probability that it is greater than 2π2ma2\frac{\hbar^{2} \pi^{2}}{m a^{2}} is

n=04bnπn\sum_{n=0}^{4} \frac{b_{n}}{\pi^{n}}

where the bnb_{n} are integers which you should find.

(iv) By considering the normalisation condition for ψ(x)\psi(x) in terms of the expansion in ψn(x)\psi_{n}(x), show that

π23=p=1Ap2+B(2p1)2(1+C(1)p(2p1)π)2\frac{\pi^{2}}{3}=\sum_{p=1}^{\infty} \frac{A}{p^{2}}+\frac{B}{(2 p-1)^{2}}\left(1+\frac{C(-1)^{p}}{(2 p-1) \pi}\right)^{2}

where A,BA, B and CC are integers which you should find.