Paper 3, Section II, H

Statistics
Part IB, 2014

Suppose that X1,,XnX_{1}, \ldots, X_{n} are independent identically distributed random variables with

P(Xi=x)=(kx)θx(1θ)kx,x=0,,k\mathbb{P}\left(X_{i}=x\right)=\left(\begin{array}{c} k \\ x \end{array}\right) \theta^{x}(1-\theta)^{k-x}, \quad x=0, \ldots, k

where kk is known and θ(0<θ<1)\theta(0<\theta<1) is an unknown parameter. Find the maximum likelihood estimator θ^\hat{\theta} of θ\theta.

Statistician 1 has prior density for θ\theta given by π1(θ)=αθα1,0<θ<1\pi_{1}(\theta)=\alpha \theta^{\alpha-1}, 0<\theta<1, where α>1\alpha>1. Find the posterior distribution for θ\theta after observing data X1=x1,,Xn=xnX_{1}=x_{1}, \ldots, X_{n}=x_{n}. Write down the posterior mean θ^1(B)\hat{\theta}_{1}^{(B)}, and show that

θ^1(B)=cθ^+(1c)θ~1\hat{\theta}_{1}^{(B)}=c \hat{\theta}+(1-c) \tilde{\theta}_{1}

where θ~1\tilde{\theta}_{1} depends only on the prior distribution and cc is a constant in (0,1)(0,1) that is to be specified.

Statistician 2 has prior density for θ\theta given by π2(θ)=α(1θ)α1,0<θ<1\pi_{2}(\theta)=\alpha(1-\theta)^{\alpha-1}, 0<\theta<1. Briefly describe the prior beliefs that the two statisticians hold about θ\theta. Find the posterior mean θ^2(B)\hat{\theta}_{2}^{(B)} and show that θ^2(B)<θ^1(B)\hat{\theta}_{2}^{(B)}<\hat{\theta}_{1}^{(B)}.

Suppose that α\alpha increases (but n,kn, k and the xix_{i} remain unchanged). How do the prior beliefs of the two statisticians change? How does cc vary? Explain briefly what happens to θ^1(B)\hat{\theta}_{1}^{(B)} and θ^2(B)\hat{\theta}_{2}^{(B)}.

[Hint: The Beta (α,β)(α>0,β>0)(\alpha, \beta)(\alpha>0, \beta>0) distribution has density

f(x)=Γ(α+β)Γ(α)Γ(β)xα1(1x)β1,0<x<1f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, \quad 0<x<1

with expectation αα+β\frac{\alpha}{\alpha+\beta} and variance αβ(α+β+1)(α+β)2\frac{\alpha \beta}{(\alpha+\beta+1)(\alpha+\beta)^{2}}. Here, Γ(α)=0xα1exdx,α>0\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \alpha>0, is the Gamma function.]