Paper 1, Section I, C

Variational Principles
Part IB, 2014

Define the Legendre transform f(p)f^{*}(\mathbf{p}) of a function f(x)f(\mathbf{x}) where xRn\mathbf{x} \in \mathbb{R}^{n}.

Show that for g(x)=λf(xx0)μg(\mathbf{x})=\lambda f\left(\mathbf{x}-\mathbf{x}_{0}\right)-\mu,

g(p)=λf(pλ)+pTx0+μg^{*}(\mathbf{p})=\lambda f^{*}\left(\frac{\mathbf{p}}{\lambda}\right)+\mathbf{p}^{\mathbf{T}} \mathbf{x}_{0}+\mu

Show that for f(x)=12xTAxf(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\mathbf{T}} \mathbf{A} \mathbf{x} where A\mathbf{A} is a real, symmetric, invertible matrix with positive eigenvalues,

f(p)=12pTA1pf^{*}(\mathbf{p})=\frac{1}{2} \mathbf{p}^{\mathbf{T}} \mathbf{A}^{-\mathbf{1}} \mathbf{p}