Paper 3, Section I, 6C\mathbf{6 C}

Variational Principles
Part IB, 2014

Let f(x,y,z)=xz+yzf(x, y, z)=x z+y z. Using Lagrange multipliers, find the location(s) and value of the maximum of ff on the intersection of the unit sphere (x2+y2+z2=1)\left(x^{2}+y^{2}+z^{2}=1\right) and the ellipsoid given by 14x2+14y2+4z2=1\frac{1}{4} x^{2}+\frac{1}{4} y^{2}+4 z^{2}=1.