Paper 3, Section I, B

Complex Methods
Part IB, 2015

Find the Fourier transform of the function

f(x)=11+x2,xRf(x)=\frac{1}{1+x^{2}}, \quad x \in \mathbb{R}

using an appropriate contour integration. Hence find the Fourier transform of its derivative, f(x)f^{\prime}(x), and evaluate the integral

I=4x2(1+x2)4dxI=\int_{-\infty}^{\infty} \frac{4 x^{2}}{\left(1+x^{2}\right)^{4}} d x