Paper 4, Section II, B

Complex Methods
Part IB, 2015

(i) State and prove the convolution theorem for Laplace transforms of two realvalued functions.

(ii) Let the function f(t),t0f(t), t \geqslant 0, be equal to 1 for 0ta0 \leqslant t \leqslant a and zero otherwise, where aa is a positive parameter. Calculate the Laplace transform of ff. Hence deduce the Laplace transform of the convolution g=ffg=f * f. Invert this Laplace transform to obtain an explicit expression for g(t)g(t).

[Hint: You may use the notation (ta)+=H(ta)(ta).]\left.(t-a)_{+}=H(t-a) \cdot(t-a) .\right]