Paper 4, Section I, A

Electromagnetism
Part IB, 2015

From Maxwell's equations, derive the Biot-Savart law

B(r)=μ04πVJ(r)×(rr)rr3d3r\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{3} \mathbf{r}^{\prime}

giving the magnetic field B(r)\mathbf{B}(\mathbf{r}) produced by a steady current density J(r)\mathbf{J}(\mathbf{r}) that vanishes outside a bounded region VV.

[You may assume that you can choose a gauge such that the divergence of the magnetic vector potential is zero.]