Paper 2, Section II, F

Geometry
Part IB, 2015

(a) For each of the following subsets of R3\mathbb{R}^{3}, explain briefly why it is a smooth embedded surface or why it is not.

S1={(x,y,z)x=y,z=3}{(2,3,0)}S2={(x,y,z)x2+y2z2=1}S3={(x,y,z)x2+y2z2=0}\begin{aligned} S_{1} &=\{(x, y, z) \mid x=y, z=3\} \cup\{(2,3,0)\} \\ S_{2} &=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}=1\right\} \\ S_{3} &=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}=0\right\} \end{aligned}

(b) Let f:U={(u,v)v>0}R3f: U=\{(u, v) \mid v>0\} \rightarrow \mathbb{R}^{3} be given by

f(u,v)=(u2,uv,v),f(u, v)=\left(u^{2}, u v, v\right),

and let S=f(U)R3S=f(U) \subseteq \mathbb{R}^{3}. You may assume that SS is a smooth embedded surface.

Find the first fundamental form of this surface.

Find the second fundamental form of this surface.

Compute the Gaussian curvature of this surface.