Paper 1, Section I, E

Linear Algebra
Part IB, 2015

Let UU and VV be finite dimensional vector spaces and α:UV\alpha: U \rightarrow V a linear map. Suppose WW is a subspace of UU. Prove that

r(α)r(αW)r(α)dim(U)+dim(W)r(\alpha) \geqslant r\left(\left.\alpha\right|_{W}\right) \geqslant r(\alpha)-\operatorname{dim}(U)+\operatorname{dim}(W)

where r(α)r(\alpha) denotes the rank of α\alpha and αW\left.\alpha\right|_{W} denotes the restriction of α\alpha to WW. Give examples showing that each inequality can be both a strict inequality and an equality.