Paper 3, Section I, H

Markov Chains
Part IB, 2015

Define what is meant by a communicating class and a closed class in a Markov chain.

A Markov chain (Xn:n0)\left(X_{n}: n \geqslant 0\right) with state space {1,2,3,4}\{1,2,3,4\} has transition matrix

P=(120120012012120120120012)P=\left(\begin{array}{cccc} \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{array}\right)

Write down the communicating classes for this Markov chain and state whether or not each class is closed.

If X0=2X_{0}=2, let NN be the smallest nn such that Xn2X_{n} \neq 2. Find P(N=n)\mathbb{P}(N=n) for n=1,2,n=1,2, \ldots and E(N)\mathbb{E}(N). Describe the evolution of the chain if X0=2X_{0}=2.