Paper 4, Section I, 5C

Methods
Part IB, 2015

(a) The convolution fgf * g of two functions f,g:RCf, g: \mathbb{R} \rightarrow \mathbb{C} is related to their Fourier transforms f~,g~\tilde{f}, \tilde{g} by

12πf~(k)g~(k)eikxdk=f(u)g(xu)du\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{f}(k) \tilde{g}(k) e^{i k x} d k=\int_{-\infty}^{\infty} f(u) g(x-u) d u

Derive Parseval's theorem for Fourier transforms from this relation.

(b) Let a>0a>0 and

f(x)={cosx for x[a,a]0 elsewhere f(x)= \begin{cases}\cos x & \text { for } x \in[-a, a] \\ 0 & \text { elsewhere }\end{cases}

(i) Calculate the Fourier transform f~(k)\tilde{f}(k) of f(x)f(x).

(ii) Determine how the behaviour of f~(k)\tilde{f}(k) in the limit k|k| \rightarrow \infty depends on the value of aa. Briefly interpret the result.