Paper 2, Section I, C

Methods
Part IB, 2015

(i) Write down the trigonometric form for the Fourier series and its coefficients for a function f:[L,L)Rf:[-L, L) \rightarrow \mathbb{R} extended to a 2L2 L-periodic function on R\mathbb{R}.

(ii) Calculate the Fourier series on [π,π)[-\pi, \pi) of the function f(x)=sin(λx)f(x)=\sin (\lambda x) where λ\lambda is a real constant. Take the limit λk\lambda \rightarrow k with kZk \in \mathbb{Z} in the coefficients of this series and briefly interpret the resulting expression.